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Abstract

Whenever independent, non-cooperative actors jointly
have to solve a complex task, they need to coordinate their
efforts. Typical examples of such task coordination prob-
lems are supply chain management, multi-modal trans-
portation and patient-centered health care management.
Common elements in such problems are a complex task, i.e.,
a set of interdependent subtasks, and a set of competitive ac-
tors. Solving a task coordination problem first of all requires
to solve a task allocation problem (how to assign competi-
tive actors to the subtasks). As a result, each of the actors
will receive a set of subtasks to complete and will need to
make a plan for this set of tasks. Therefore, also a plan co-
ordination problem has to be solved (how to ensure that a
joint plan always can be composed, whatever plan is chosen
by the individual actors). The aim of this paper is twofold:
first of all to present a general formal framework to study
some computational aspects of thisnon-cooperative coor-
dinationproblem, and secondly to establish some complex-
ity results and to identify some of the factors that contribute
to the complexity of this problem.

2. Introduction

As the result of a significant shift of focus in artificial
intelligence from single agent to multi-agent systems, task
coordination has become one of the central topics in AI-
research [10, 12, 13, 20]. The task coordination problem it-
self is easy to state:How to coordinate autonomous actors
(agents) to jointly solve a complex task they are not able
to solve individually. Typical application areas where such
complex tasks have to be solved are e.g., automated sup-
ply chain management, seamless multi-modal transporta-
tion provided by independent transportation companies, and
patient-centered health care management systems. Usually,
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a complex task is specified as a set of interdependent sub-
tasks and for every subtask some specific abilities that are
required to perform the task. The autonomous actors in-
volved each have specific abilities enabling them to solve
specific subtasks, but not the complete task. Therefore, solv-
ing the complete problem first of all requires to solve atask
allocationproblem (how to assign competitive actors to the
subtasks distinguished). Besides their abilities, agents may
also differ in the costs they associate with performing a sub-
task.Task allocation methodsaim to minimize the cost of
individual agents or the total cost of performing all tasks.
As the result of a task allocation process, each actor re-
ceives a set of subtasks to perform. It is important to re-
alize that due to differences in capabilities, interdependent
tasks might be allocated to different actors. For example, a
task (order) in a supply chain consists of composing parts
where some suppliers assemble some parts that in turn are
assembled by other actors. As a result, two actors (suppli-
ers) might become dependent upon each other. In the appli-
cations we have in mind, each actor will need to make aplan
for the set of tasks allocated to it, e.g., each supplier will
have to make a plan for performing its set of assembling or-
ders. Due to the dependency constraints (one subtask being
dependent upon the completion of another), however, not
every plan feasible for an individual actor might be compat-
ible with plans of the other actors. Therefore, besides a task
allocation problem, also aplan coordinationproblem has to
be solved (i.e., how to ensure that the plans constructed by
each of the individual actors constitute a feasible conflict-
free plan for the complete task). The outcome of such a plan
coordination process is the specification (implicitly or ex-
plicitly) of a set of additionalplan constraintsthat, once
satisfied, guarantees the existence of a conflict-free and fea-
sible joint plan.1 Accepting such plan constraints, however,
might incur some additional costs on performing the tasks

1 Take the following simple example: Suppose actor X has to perform
task x1 and x2 and actor Y has to perform task y1 and y2. Let task y1
require task x1 to be completed first and let task x2 require y2 to be
completed first. Then a plan where X will perform x2 before x1 is not
compatible with a plan where Y will perform y1 before y2, since then
a circular dependency will be introduced.



already accepted by an actor. For example, plans satisfy-
ing such an additional constraint might be more costly than
plans without. Therefore, we should also provide a method
to allocate plan constraints to actors that takes into account
these cost factors. Finally, we have to take into account that
in some cases both processes (task allocation and plan coor-
dination) cannot be solved independently from each other: a
(nearly) optimal task allocation process might induce such
large costs on the acceptance of plan coordination that the
total costs are more than the total costs based on an infe-
rior task allocation. Therefore, a careful integration of task
allocation and plan coordination methods is called for in or-
der to minimize the costs for the actors involved.

Although quite a number of studies have concentrated
on approaches to task allocation in multi-agent systems
(cf.[15, 16, 19]) and its relations to combinatorial optimiza-
tion problems (c.f. [9]), in most approaches the complex
tasks described are rather simple: often they consist of a
set of independent subtasks and each of the actors receives
one single subtask or a subset of subtasks. Even if the task
description is more elaborate like in the Traderbots archi-
tecture [4], it is assumed that the set of subtasks does not
require an elaborate planning process to execute. There-
fore, the problem of identifying planning constraints and
the problem of allocating them does not occur in this ap-
proach. Furthermore, almost all current approaches to plan
coordination assume that tasks already have been allocated
and consider plan coordination with respect to already in-
dividually completed plans (coordination after planning, cf.
[1, 2, 14]), or coordination of partially completed plans (co-
ordination during planning, cf. [3, 5, 6, 11]). In both these
coordination approaches, it is taken for granted that the indi-
vidual agents are prepared to share information about their
plans and, if necessary, to adapt and revise their individual
plans after they have constructed their plans.

In this paper we concentrate on the coordination ofnon-
cooperative autonomous planning agents: How to coordi-
nate autonomous planning agents that, although aiming to
solve a common planning problem, do not want to be in-
terfered by other agents inplanningtheir part of the prob-
lem. In particular, this implies that to solve this problem,
the individual planning products should allow to compose a
joint coordinated solution,whatever plans will be chosen by
the individual agents. This means that coordination during
or after planning is simply not possible: in these cases ev-
ery non-trivial coordination would imply a proposal for re-
vision of a partial or complete plan of an individual agent
and every such a proposal would be rejected by the agent in-
volved. Hence, the only possibility for such non-cooperative
planning agents to coordinate is to do sobeforethey start to
plan.We therefore concentrate on such a coordinationbe-
fore planning(cf. [5]) approach.

Our main goals are(i) to present a formal and general

framework to discuss task allocation and coordination prob-
lems,(ii) to point out the complexity of the resulting coor-
dination problems, and(iii) to identify some of the factors
that influence the complexity of the problem.2

Choosing a pre-planning approach to multi-agent plan-
ning also enables us to separate thetask-allocationprob-
lem (which agent performs which subtask) from theplan-
ning problem and to relate it to the plan coordination prob-
lem to be discussed. In this sense our approach can be seen
to extend current task allocation research approaches as e.g.
in [16].

3. Introducing the framework
The formal framework we will introduce is intended to

capture the general aspects of task-based planning and coor-
dination of non-cooperative3 agents. Using this framework,
we are able to distinguish the main components of the co-
ordination problem –and their interactions– we are inter-
ested in:(i) a complex taskrequiring the joint effort of sev-
eral agents to complete it;(ii) a task assignmentprocess by
means of which each agent obtains a subset of tasks to solve,
(iii) a planning processenabling each agent solves its sub-
set of tasks to complete(iv) a coordination mechanismby
means of which a joint solution (if possible) to the origi-
nal complex task can be ensured.

Complex tasks We distinguish a set of non-cooperative
agentsA = {A1, A2, . . . , An} and a structured set of
tasksT , called a complex task. Such a complex taskT =
(T, ρ,≺) consists of a set of tasksT = {t1, t2, . . . tk} and
two relationsρ and≺ whose transitive closures specify a
partial order onT .4 The relation≺ specifies aprecedence5

relation between tasks inT , t ≺ t′ expressing thatt′ can-
not start untilt has been completed, i.e., in every plant has
to be planned to occur beforet′. The relationρ is a refine-
mentrelation that specifies a hierarchical taskdecomposi-
tion relation between tasks in thetask network(T, ρ) asso-
ciated withT , closely resembling the way HTN-plans are
constructed (see [7]). Specifically, letρ(t) = {t′ | tρt′},
thenρ(t) is the set of (sub)tasks that might be used to com-
pletet.
[ A few notes on terminology:(i) we will use σc to de-
note the converse of a relationσ, σ+ to stand for thetran-
sitive closureof σ, andσ− to denote itstransitive reduc-
tion; (ii) two relationsσ and τ are calledequivalent, de-

2 Elsewhere, we have discussed some approximation algorithms for
achieving pre-planning coordination.

3 That is, non cooperative with respect to planning
4 We do not require≺ andρ to be transitively closed and make a dis-

tinction between the relation as specified and the relation as induced
by its transitive closure.

5 Note that such a precedence relation can be induced by various other
dependency relations like resource dependencies, organizational reg-
ulations, etc.



noted asτ ≡ σ, iff τ+ = σ+; (iii) a relationτ is said to
extendσ, denoted byσ � τ , iff σ+ ⊆ τ+. ]

Furthermore,ρ consists of two disjoint subsets:ρ∨,
defining an OR-relation between the subtasks of a task,
andρ∧, defining an AND-relation. We require that for any
taskt, ρ(t) is either completely inρ∨(t), or completely in
ρ∧(t). Intuitively, if ρ(t) ⊆ ρ∧, taskt itself is an abstract
task. An agent that has to achievet might choose to com-
plete t in its own way without taking notice to its set of
subtasks, or by completing every subtaskt′ ∈ ρ(t); anal-
ogously, ifρ(t) ⊆ ρ∨, t can be completed by performing
t (choosing the agents own method to solve it) or by com-
pleting one of the subtaskst′ ∈ ρ(t). Finally, we require
that for any pair of taskst, t′, ρ(t) ∩ ρ(t′) = ∅, i.e. refine-
ments are unique.
The relationsρ and≺ are related as follows: First of all,ρ
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Figure 1. A complex task with refinement ( ρ) and
precedence ( ≺) relations between tasks. T0 =

{t1, t2} is the set of initial tasks. Other tasks are re-
finements of these tasks. Note that {t21, t22, t23} =

ρ∧(t2), while ρ∨(t11) = {t111, t112}.

and≺ are orthogonal, i.e.,ρ+ ∩ (≺ ∪ ≺c)+) = ∅: prece-
dence relations only exist between tasks that are not
refinements of each other. Secondly, precedences are in-
herited via refinements, that is, ift ≺ t′ then for all
t1 ∈ ρ(t) and for allt2 ∈ ρ(t′) we havet1 ≺+ t′, t ≺+ t2
and t1 ≺+ t2. See Figure 1 for an example of a com-
plex task specification.

We now inductively define task completion in a task net-
work (T, ρ) as follows:

Definition 3.1 (Task completion) A taskt in (T, ρ) is said
to becompletedif exactly one of the following conditions
holds:

1. t has been performed directly;

2. ∅ 6= ρ(t) ⊆ ρ∨ and there is a taskt′ ∈ ρ(t) that has
been completed;

3. ∅ 6= ρ(t) ⊆ ρ∧ and all taskst′ ∈ ρ(t) have been com-
pleted;

In Figure 1 for instance, taskt11 is completed if eithert11 is
performed directly, or ift111 is performed, or ift112 is com-
pleted by either performingt112 directly, or by performing
botht1121 andt1122.

Definition 3.2 (Task network completion) A task net-
work (T, ρ) is said to be completed if every taskt in the
set of initial tasksT0 = {t | ρc(t) = ∅} has been com-
pleted.

A task network is thus completed if all ‘root’ tasks
have been completed; in Figure 1, the task network
has been completed if botht1 and t2 have been com-
pleted and these tasks can be completed by e.g. perform-
ing the taskst111, t12, t21, t221, t222 and t23. Note that
the model presented here differs from most other hier-
archical task frameworks in the sense that we do not re-
strict the tasks to be performed to the set of leaf-tasks (tasks
t for whichρ(t) = ∅).
Task allocation To perform a certain taskt ∈ T , an
agentAi must have the capabilities required to perform it.
We assume that in the entire multi-agent system,m dis-
tinct capabilities c1, c2, . . . , cm can be distinguished.
We represent the capabilities of agentAi by the vec-
tor ~c(Ai) = (c1(Ai), . . . , cm(Ai)) ∈ (N ∪ {∞})m, where
cj(Ai) specifies how much agentAi can offer of ca-
pability cj (we will assume integral quantities). Sim-
ilarly, the vector~c(tj) = (c1(tj), . . . , cm(tj)) ∈ Nm

specifies how much of each capability tasktj ∈ T re-
quires. An agentAi is said to be able to perform a sub-
set of tasksTi ⊆ T iff ~c(Ai) ≥ Σt∈Ti

~c(t) (where~x ≥ ~y
iff for all i = 1, . . . ,m, xi ≥ yi). Note that ifcj(Ai) is fi-
nite, the capability is considered to be aconsumable re-
source (i.e., fuel, time, or money). Ifcj(Ai) = ∞, we
are dealing with anon-consumable resourcecapability
(i.e., knowledge or a skill).6 In the following, we will ab-
breviate the set of agent capability vectors and the set
of task capability vectors by~c(A) and ~c(T ), respec-
tively.

A typical free task instanceis specified as a tu-
ple (T, ρ,≺, A,~c(A),~c(T )). Such an instance speci-
fies the tasks, their refinement relation, dependencies, and
the task as well as the agent capabilities.

To complete the set of tasksT , individual taskst ∈ T
have to be assigned to agents. Given a task network(T, ρ),
first of all we have to define which (subsets of) tasks can be
assigned to agents in order to complete(T, ρ). Such a set

6 Such resources are also calledinfinite resources.



T ′ ⊆ T we call acandidate assignment setand is defined
as follows:

Definition 3.3 T ′ ⊆ T is a candidate assignment setof
(T, ρ) if T ′ satisfies the following requirements:

1. T ′ is a ρ+-independent subset ofT , i.e. if t, t′ ∈ T ′

then neithertρ+t′ nor t′ρ+t should hold; (it is not al-
lowed to perform both a task and one of its (indirect)
subtasks);

2. If t ∈ ρ∨(t′) for somet′ ∈ T thenρ∨(t′) ∩ T ′ = {t})
(a unique choice has to be made to complete a task by
OR-subtasks);

3. (T, ρ) is completed by performing the tasks inT ′ (cf.
Definition 3.1) .

Referring to Figure 1, the setT ′ = {t111, t12, t21, t221, t222,
t23} is a candidate assignment set7. An assignment setis a
candidate assignment setT ′ where every taskt ∈ T ′ can be
assigned to an agent capable of performing it:

Definition 3.4 (assignment set)T ′ ⊆ T is an assignment
set for a free task instance(T, ρ,≺, A,~c(A),~c(T )) if (i)
T ′ is a candidate assignment set and(ii) there exists a
partitioning8 [T ′] = [T1, T2, . . . , Tn] of T ′ such that for
i = 1, . . . , n, agentAi is able to performTi, i.e.,~c(Ai) ≥
Σt∈Ti

~c(t).

Applying an assignment to a free task instance(T, ρ,≺
, A,~c(A),~c(T )) results in afixed task instance([Ti]ni=1,≺
, A, ~c(A),~c(T )). Since now the refinement relation and
the capabilities are no longer needed9 and agents are char-
acterized by the partition blocks of aρ-independent set
T ′ ⊆ T , we often abbreviate fixed task instances by the tu-
ple ([Ti]ni=1,≺). Without loss of generality we assume ev-
ery blockTi to be non-empty.

Intuitively, a complex taskT specifies both alternative
ways and minimal restrictions for organizing the comple-
tion of T . We mention that these complex tasks can be seen
to extend the notion of atask treeas introduced by [21].

Planning As the result of a task assignment process, in a
fixed task instance([Ti]ni=1,≺) the set of precedence con-
straints≺ is split up into two disjoint subsets:

1. the set≺intra=
⋃n

i=1 ≺i of intra-agentconstraints,
where≺i= (≺+ ∩

⋃n
i=1(Ti×Ti))− is the set of prece-

dence constraints between tasks assigned to the same
agentAi and

7 Observe that a candidate assignment set does not have strict supersets
or strict subsets that also are candidate assignment sets. Moreover, if
ρ = ∅, there is only one unique candidate assignment set:T ′ = T

8 Since the agents are planning independently, we only considersingle-
agent task assignments(cf. [9]).

9 Since it is assumed that each agent is able to complete the tasks as-
signed to it and no two or more tasks in an assignment set areρ-related.

2. the set ofinter-agentconstraints, i.e., the set of con-
straints that hold between tasks assigned to different
agents:≺inter= (≺+ ∩

⋃
i 6=j(Ti × Tj))−.

Each agentAi then has to solve a subtask(Ti,≺i) gener-
ated by the tasksTi allocated to it. We assume that in order
to completeTi each agent has to construct aplan (or sched-
ule) for it. We do not make any assumptions about the plan-
ning tools used by the agents. Whatever plan/schedule rep-
resentation the agents (internally) employ, we assume that
the planAi develops forTi can be represented as a struc-
ture Pi = (Ti, πi) extending10 the dependency structure
(Ti,≺i), i.e.,π+

i is a partial order such that≺i � πi.

Joint plans From the perspective of an individual agent,
it should be completely autonomous in choosing its plan,
i.e. the exact extensionπi of ≺i. Due to the presence of the
inter-agentconstraints, however, not every combination of
individually developed plans will result in a feasible joint
plan. The coordination problem now can be stated as fol-
lows: How can we guarantee that every combination of in-
dividually generated plans can be combined into a feasible
joint plan, without revising them? The answer lies in impos-
ing, prior to planning, additional constraints on the agents’
subtasks.

Before we state our coordination problem formally, we
first define ajoint plan of the agentsAi in a fixed task in-
stance:

Definition 3.5 A planP is a joint plan for the task instance
([Ti]ni=1,≺) if P = (T ′, π), whereT ′ =

⋃n
i=1 Ti, andπ+

is a partial order extending≺, i.e.,≺ � π.

We need to guarantee that individual agents do not need
to revise their individual plans(Ti, πi) when assembling a
joint plan from them. That is, the joint plan shouldrespect
each individual plan:

Definition 3.6 A joint plan P = (T ′, π) respects the in-
dividual planPi = (Ti, πi) of agentAi if Ti ⊆ T ′ and
πi � (π ∩ (Ti × Ti)).

We don’t need to specify exactly how the individual plans
are assembled to construct the overall plan. It suffices to
consider the case of just joining the individual partial order-
ings together with the inter-agent constraints:

Definition 3.7 (Simple joining) Given a fixed task in-
stance ([Ti]ni=1,≺) and a set{ Pi = (Ti, πi) }n

i=1 of
individual plans, thesimple joiningof them is the struc-
tureJ = (

⋃n
i=1 Ti, πJ), whereπJ ≡ (≺inter ∪(

⋃n
i=1 πi)).

Now it is not difficult to see that the simple joining exhibits
a tell-tale property w.r.t. respecting individual plans: Given
a fixed task instance([Ti]ni=1,≺), there exists a joint plan
P for it respecting the individual plansPi = (Ti, πi) of the

10 Since a planPi at least has to satisfy all intra-agent constraints≺i.
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Figure 2. A set of interdependent tasks T =

{t1, t2, t3, t4} and two agents A1 and A2 each as-
signed to a part of T (a). If agent A1 decides to
make a plan where t2 precedes t1 and A2 makes a
plan where t3 precedes t4 (see b), these plans can-
not be combined.

agents iff the simple joiningJ = (
⋃n

i=1 Ti, πJ) of them
induces a partial ordering ofT ′ =

⋃n
i=1 Ti, i.e., if π+

J is
acyclic. So it suffices to concentrate on simple joinings.

4. Coordination problems
If, for a given fixed task instance, it holds that what-

ever individual plans are constructed, their simple joining
is always acyclic, the instance is said to becoordinated.
Clearly, coordinated instances guarantee independent plan-
ning without the need to revise individual plans. Unfortu-
nately, not every fixed task instance is coordinated and the
question arises how to induce this property for every task in-
stance:

Example 4.1 Consider two agentsA1 and A2 and four
tasksT = {t1, t2, t3, t4} (see Figure 2 (a)): The prece-
dence relation≺ is given as≺ = {(t1, t3), (t4, t2)}. Sup-
pose thatt1, t2 are assigned toA1 and t3, t4 to A2. Then
A1 has to solve the subtask({t1, t2}, ∅) , while A2 has to
solve({t3, t4}, ∅). Note that≺inter=≺. Suppose nowA1

chooses a plan wheret2 will be performed beforet1 andA2

chooses a plan wheret3 will be performed beforet4 (see
Figure 2 (b)). Then there exists no feasible joint plan pre-
serving≺ and the individual plans since the combination of
their plans with the inter-agent constraints constitutes a cy-
cle: t1 ≺ t3 π2 t4 ≺ t2 π1 t1, implying thatt1 has to be
performed beforet1.

The solution we propose is to add aminimumset of
intra-agent precedence constraints (called acoordination
set) such that the independence-threatening inter-agent con-
straints are made harmless: Looking back at Example 4.1,
a possible solution is to add — prior to planning — an
additional constraint, for instancet1 ≺ t2, to the set of

intra-agents constraints of agentA1. Then, whatever plans
the agents come up with (respecting their intra-agent con-
straints, of course), the results can always be combined into
an acyclic joint plan: by adding such a coordination set the
instance has become a coordinated instance. In general, the
solution if to specify, for each agentAi, a minimum set∆i

of additional intra-agent constraints such that the resulting
instance([Ti]ni=1,≺ ∪∆), with ∆ =

⋃n
1 ∆i, is a coordi-

nated instance. It is not difficult to show that such a set∆
always exists:

Proposition 4.2 Let ([Ti]ni=1,≺) be a fixed task instance.
Then there always exists a setΓ ⊆

⋃n
i=1 Ti × Ti such that

([Ti]ni=1,≺ ∪ Γ) is a fixed task instance that is coordinated.

Proof. Since≺+ is a partial order, there always ex-
ists a total ordering≺∗ of T extending≺+. For eachTi,
let Γi be a smallest set of precedence constraints such that
(≺i ∪ Γi)+ =≺∗ ∩ (Ti × Ti) and letΓ =

⋃
Γi. Clearly,

(≺ ∪ Γ)+ � ≺∗ is a partial order, so([Ti]ni=1,≺ ∪Γ)
is a task instance. Moreover, for everyi = 1, . . . , n,
(≺i ∪ Γi)+ totally ordersTi; hence, for every individ-
ual planPi = (Ti, πi) we must haveπi ≡ (≺i ∪ Γi).
Hence,≺ ∪

⋃n
i=1 πi ≡ ≺ ∪ Γ is acyclic and there-

fore the instance is coordinated. 2

Given that the set of tasks and precedence constraints is
finite, by Proposition 4.2, it follows that there always ex-
ists a minimum set∆ ⊆

⋃n
i=1 Ti × Ti such that([Ti]ni=1,≺

∪ ∆) is a task instance that is coordinated.11 In the follow-
ing section we will analyze the computational complexity
of some variants of the coordination problem and the fac-
tors that influence their complexity.

5. Complexity results
We will start with the easiest variant of the coordina-

tion problem: toverify for a fixedtask instance whether in-
dividual plans always can be joined whatever plans may
be composed by the participating agents, i.e., determin-
ing whether a task instance is already coordinated:

FIXED COORDINATION VERIFICATION (FIX CV)
Given a fixed task instance([Ti]ni=1,≺) , is it true that, for
every i = 1, . . . , n, if the extensionsπi ⊆ (Ti × Ti) of
≺ ∩(Ti × Ti)) are acyclic, then the relation≺ ∪

⋃n
i=1 πi

is acyclic as well?

This problem is co-NP complete: it is in co-NP be-
cause we can polynomially verify a counter example con-
sisting of a set of agent plans that create a cycle in
the joint plan. Determining that no such counter exam-
ple can be found — the instance is coordinated — is at

11 Elsewhere ([18]) we have presented a distributed (approximation) al-
gorithm to approximate such a minimum set∆ of additional con-
straints.



least as hard as the NP-complete PATH WITH FORBID-
DEN PAIRS (PWFP, see [8]) problem, however.12

Going from fixed task instances to free task instances
implies the addition of task assignment problems in the co-
ordination verification problem. These task assignment
problems constitute an independent factor of complex-
ity as the total complexity goes up one step in the polyno-
mial hierarchy: the following FREECV-problem turns out
to beΣp

2-complete:

FREE COORDINATION VERIFICATION (FREECV)
Given a free task instance(T, ρ,≺, A,~c(A),~c(T )) does
there exist a single-agent task assignment such that the re-
sulting fixed task instance([Ti]ni=1,≺) is coordinated?

By first guessing a task assignment and then using a
FIX CV-oracle for the resulting fixed task instance we could
verify a yes-instance in polynomial time. Hence, the prob-
lem is inΣp

2. Hardness for this class is shown by reducing
aΣp

2-complete quantified version of the PWFP-problem to
it.

It is interesting to note that the problem of finding a
suitable single-agent assignment for a free task instance
is NP-hard for consumable capabilities13 and polynomi-
ally solvable for non-consumable capabilities. These differ-
ences in complexity, however, disappear when these assign-
ment problems interact with the coordination problem: the
FREECV-problem turns out to beΣp

2-hard for both assign-
ment conditions.

Both verification problems ask whether task instances
are coordinated. More complicated coordination problems
ask for the existence of bounded sets of precedence con-
straints (coordination sets) that, when added to a task in-
stance, render it coordinated:

FIXED COORDINATION (∃FIX C) Given a fixed task in-
stance ([Ti]ni=1,≺) and a positive integer14 K > 0, does
there exist a set∆ ⊆

⋃n
i=1(Ti × Ti) with |∆| ≤ K such

that the fixed task instance([Ti]ni=1,≺ ∪∆) is coordinated?

Intuitively, guessing a coordination set∆, we can verify
in polynomial time using a FIX CV-oracle whether the in-
stance([Ti]ni=1,≺ ∪∆) is coordinated. Since FIX CV∈ co-
NPC, it follows that FIX C∈ Σp

2. Elsewhere, we have shown
this∃FixC problem to beΣp

2-complete.
It would be reasonable to assume that one source of com-

plexity of the coordination problem can be attributed to the
number of taskseach agent receives and — indirectly —
to the complexity of the single-agent planning problems.
This, however, turns outnot to be the case: even if the
single-agent planning problems are trivial, this coordination

12 Due to lack of space, all complexity proofs have been omitted. For de-
tails consult [17].

13 By reduction from e.g. PARTITION.
14 Note that forK = 0 this problem is equivalent to FIX CV.

problem remains intractable. For example, if each agent re-
ceives only two tasks, the∃FIX C-problem is already co-
NP-complete andΣp

2-completeness can be proven already
for agents having 8 tasks or more.15

Since fixed and free variants differ in complexity with
respect to the coordination-verification problem, one would
expect the same complexity differences to occur between
the fixed and free variants of the coordination problem.
Consider the following free-variant:

FREE COORDINATION (∃FREEC) Given a free task in-
stance(T, ρ,≺, A,~c(A),~c(T )) and a positive integerK >
0, does there exist an assignment of tasks to agents and a co-
ordination set∆ with |∆| ≤ K such that the resulting fixed
task instance([Ti]ni=1,≺ ∪∆) is coordinated?

Note that it suffices to guess both an assignment and a coor-
dination set∆ to verify in polynomial time using a FIX CV-
oracle that the given instance is a yes-instance. Therefore,
the problem is no harder than the∃ FIX C-problem. Hence,
the additional task of producing an assignment does not in-
crease the complexity of the problem in an essential way.

It turns out the most difficult coordination problems have
to do with guaranteeing thateveryassignment of agents to
tasks results in a coordinated task instance if we are allowed
to add at mostK-constraints:

FREE FOR ALL COORDINATION (∀FREEC) Given a free
task instance(T, ρ,≺, A,~c(A),~c(T )) and a positive integer
K > 0, is it true that for every feasible assignment of tasks
to agents, there exists a coordination set∆ ⊆

⋃n
i=1(Ti×Ti)

with |∆| ≤ K such that the instance([Ti]ni=1,≺ ∪∆) is co-
ordinated?

By guessing an assignment and using aΣp
2-oracle for the re-

sulting∃FIX C -problem, we can verify a counter-example
in polynomial time. Hence, the problem is inΠp

3 and also
turns out to be complete for this class, too.

6. Discussion
We have introduced a task-based framework to discuss

some computational aspects of a coordination problem for
non-cooperative agents. We have analyzed the computa-
tional complexity of some variants of this problem and dis-
cussed some factors and their interaction contributing to
this complexity. Although these problems turn out to be
intractable for already simple task instances, elswhere we
have shown that reasonable solutions can be obtained by
adding (nearly minimal) sets of additional constraints.

To conclude this paper, we would like to point out some
broader perspectives on the approach to the coordination
problem(s) as we discussed above.

First of all, our pre-planning coordination problem can
be viewed both as adecomposition problemas well as are-

15 So we have still a complexity gap between 2 and 8 tasks per agent.



vision by minimal change problem: how to ensure that solu-
tions (plans) to independently solved subproblems always
can be integrated into an overall solution ( a coordinated
plan) by minimally changing the original problem, i.e. by
adding a minimal set of additional constraints to the origi-
nal problem? Essentially, our approach to the coordination
problem then suggests the following (central or distributed)
algorithmic method to solve these and possibly other multi-
agent problems: try to minimally change the original prob-
lem such that a divide-and-conquer approach can be used to
solve the problem by decomposing it into a number of inde-
pendent subproblems whose solution can be simply joined
to compose the overall solution.

Secondly, with respect to planning technology, we note
that methods using this approach would be able to seam-
lessly integrateexisting single-agent planning tools into a
multi-agent environment: decompose a multi-agent prob-
lem into a number of independent single-agent planning
problems by minimally revising the original problem, let
the agents work on them using their own planning technol-
ogy and then integrate the results into an overall solution
just by joining the individually constructed plans.
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