Coordinating Non Cooperative Planning Agents: Complexity Results

Adriaan ter Mors  Cees Witteveen
Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands,
{a.w.termors, c.wittevegi@ewi.tudelft.nl

Abstract a complex task is specified as a set of interdependent sub-
tasks and for every subtask some specific abilities that are
Whenever independent, non-cooperative actors jointly required to perform the task. The autonomous actors in-
have to solve a complex task, they need to coordinate theirvolved each have specific abilities enabling them to solve
efforts. Typical examples of such task coordination prob- specific subtasks, but not the complete task. Therefore, solv-
lems are supply chain management, multi-modal trans-ing the complete problem first of all requires to solvask
portation and patient-centered health care management.allocationproblem (how to assign competitive actors to the
Common elements in such problems are a complex task, i.e.subtasks distinguished). Besides their abilities, agents may
a set of interdependent subtasks, and a set of competitive acalso differ in the costs they associate with performing a sub-
tors. Solving a task coordination problem first of all requires task.Task allocation methodaim to minimize the cost of
to solve a task allocation problem (how to assign competi- individual agents or the total cost of performing all tasks.
tive actors to the subtasks). As a result, each of the actorsAs the result of a task allocation process, each actor re-
will receive a set of subtasks to complete and will need to ceives a set of subtasks to perform. It is important to re-
make a plan for this set of tasks. Therefore, also a plan co-alize that due to differences in capabilities, interdependent
ordination problem has to be solved (how to ensure that a tasks might be allocated to different actors. For example, a
joint plan always can be composed, whatever plan is chosentask (order) in a supply chain consists of composing parts
by the individual actors). The aim of this paper is twofold: where some suppliers assemble some parts that in turn are
first of all to present a general formal framework to study assembled by other actors. As a result, two actors (suppli-
some computational aspects of tinign-cooperative coor-  ers) might become dependent upon each other. In the appli-
dinationproblem, and secondly to establish some complex- cations we have in mind, each actor will need to magkaa
ity results and to identify some of the factors that contribute for the set of tasks allocated to it, e.g., each supplier will
to the complexity of this problem. have to make a plan for performing its set of assembling or-
ders. Due to the dependency constraints (one subtask being
dependent upon the completion of another), however, not
2. Introduction every plan feasible for an individual actor might be compat-
ible with plans of the other actors. Therefore, besides a task
As the result of a significant shift of focus in artificial allocation problem, alsoglan coordinatiorproblem has to
intelligence from single agent to multi-agent systems, task be solved (i.e., how to ensure that the plans constructed by
coordination has become one of the central topics in Al- each of the individual actors constitute a feasible conflict-
research [10, 12, 13, 20]. The task coordination problem it- free plan for the complete task). The outcome of such a plan
self is easy to statddow to coordinate autonomous actors coordination process is the specification (implicitly or ex-
(agents) to jointly solve a complex task they are not able plicitly) of a set of additionalplan constraintsthat, once
to solve individually Typical application areas where such satisfied, guarantees the existence of a conflict-free and fea-
complex tasks have to be solved are e.g., automated supsible joint plant Accepting such plan constraints, however,
ply chain management, seamless multi-modal transporta-might incur some additional costs on performing the tasks
tion provided by independent transportation companies, and

patient-centered health care management systems. Usually, Take the following simple example: Suppose actor X has to perform
task x1 and x2 and actor Y has to perform task y1 and y2. Let task y1
require task x1 to be completed first and let task x2 require y2 to be
+ Also affiliated with the Centre for Mathematics and Computer Sci- completed first. Then a plan where X will perform x2 before x1 is not
ence, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands, compatible with a plan where Y will perform y1 before y2, since then
C.Witteveen@cwi.nl a circular dependency will be introduced.




already accepted by an actor. For example, plans satisfyframework to discuss task allocation and coordination prob-
ing such an additional constraint might be more costly than lems, (i7) to point out the complexity of the resulting coor-
plans without. Therefore, we should also provide a method dination problems, anii:) to identify some of the factors
to allocate plan constraints to actors that takes into accounthat influence the complexity of the problem.
these cost factors. Finally, we have to take into account that Choosing a pre-planning approach to multi-agent plan-
in some cases both processes (task allocation and plan coomring also enables us to separate thsk-allocationprob-
dination) cannot be solved independently from each other: alem (which agent performs which subtask) from filan-
(nearly) optimal task allocation process might induce such ning problem and to relate it to the plan coordination prob-
large costs on the acceptance of plan coordination that thdem to be discussed. In this sense our approach can be seen
total costs are more than the total costs based on an infeto extend current task allocation research approaches as e.g.
rior task allocation. Therefore, a careful integration of task in [16].
allocation and plan coordination methods is called for in or-
der to minimize the costs for the actors involved. .

3. Introducing the framework

Although quite a number of studies have concentrated ~ . .
The formal framework we will introduce is intended to

on approaches to task allocation in multi-agent systems X
capture the general aspects of task-based planning and coor-

(cf.[15, 16, 19]) and its relations to combinatorial optimiza- ~“F*" 3 ; ;
tion problems (c.f. [9]), in most approaches the complex dination of non-c_oo_pera_ltl eagents._ Using this framework,
e are able to distinguish the main components of the co-

tasks described are rather simple: often they consist of aV€ ar¢. - i .

set of independent subtasks and each of the actors receiveddination problem —and their interactions— we are inter-
one single subtask or a subset of subtasks. Even if the tasi€Sted ini) acomplex taskequiring the joint effort of sev-
description is more elaborate like in the Traderbots archi- eral agents tf) complete {{i) atas_k assignmergirocess by
tecture [4], it is assumed that the set of subtasks does nof€ans of which each agent obtains a subset of tasks to solve,
require an elaborate planning process to execute. Thereliil) @planning procesenabling each agent solves its sub-

fore, the problem of identifying planning constraints and Set Of tasks to completgv) a coordination mechanisry
the problem of allocating them does not occur in this ap- means of which a joint solution (if possible) to the origi-
proach. Furthermore, almost all current approaches to plar '@ complex task can be ensured.

coordination assume that tasks already have been allocate@omplex tasks We distinguish a set of non-cooperative
and consider plan coordination with respect to already in- agentsA = {A;,A,,...,A,} and a structured set of
dividually completed plans (coordination after planning, cf. tasks7, called a complex task. Such a complex tdsk=

[1, 2, 14]), or coordination of partially completed plans (co- (T, p, <) consists of a set of taskB = {¢;,ts, ...} and
ordination during planning, cf. [3, 5, 6, 11]). In both these two relationsp and < whose transitive closures specify a
coordination approaches, it is taken for granted that the indi- partial order oril’.# The relation< specifies grecedence
vidual agents are prepared to share information about theirrelation between tasks ifi, ¢ < ¢’ expressing that' can-
plans and, if necessary, to adapt and revise their individualnot start untilt has been completed, i.e., in every ptams

plans after they have constructed their plans. to be planned to occur befoté The relationp is arefine-
In this paper we concentrate on the coordinationai- mentrelation that specifies a hierarchical tas«composi-
cooperative autonomous planning agert®w to coordi-  tion relation between tasks in thask network 7', p) asso-

nate autonomous planning agents that, although aiming tociated with7', closely resembling the way HTN-plans are
solve a common planning problem, do not want to be in- constructed (see [7]). Specifically, Iptt) = {t' | tpt'},
terfered by other agents planningtheir part of the prob-  thenp(t) is the set of (sub)tasks that might be used to com-
lem. In particular, this implies that to solve this problem, Pletet.

the individual planning products should allow to compose a [ A few notes on terminology(i) we will use o¢ to de-
joint coordinated solutionyhatever plans will be chosen by ~note the converse of a relation o™ to stand for theran-

the individual agentsThis means that coordination during Sitive closureof o, ando™ to denote itstransitive reduc-

or after planning is simply not possible: in these cases ev-1ion; (ii) two relationso and T are calledequivalent de-

ery non-trivial coordination would imply a proposal for re-
vision of a partial or complete plan of an individual agent 2 iﬁgﬂﬁrer;ﬁl:ﬁrﬁ dLSOC(;JrZ?r?gﬁggme approximation algorithms for
and every such a proposal W(_)L_ll_d be rejected by the agen_t N3 Thatis, SO'?] Copoperati%e with respec.t o planning

volved. Hence, the only possibility for such non-cooperative 4 we do not require< andp to be transitively closed and make a dis-

planning agents to coordinate is to dobgjorethey start to tinction between the relation as specified and the relation as induced
plan.We therefore concentrate on such a coordindtien by its transitive closure. . . .

. 5 Note that such a precedence relation can be induced by various other
fore planning(cf. [5]) approach. dependency relations like resource dependencies, organizational reg-

Our main goals aréi) to present a formal and general ulations, etc.




noted asr = o, iff 7+ = o™T; (ii7) a relationr is said to
extends, denoted by < 7, iff o7 C 77.]
Furthermore,p consists of two disjoint subsets,,

defining an OR-relation between the subtasks of a task,

andp,, defining an AND-relation. We require that for any
taskt, p(t) is either completely i, (¢), or completely in
pa(t). Intuitively, if p(t) C pa, taskt itself is an abstract
task. An agent that has to achiewvenight choose to com-
pletet¢ in its own way without taking notice to its set of
subtasks, or by completing every subtaSke p(t); anal-
ogously, ifp(t) C py, t can be completed by performing
t (choosing the agents own method to solve it) or by com-
pleting one of the subtasks € p(t). Finally, we require
that for any pair of tasks, t', p(¢t) N p(¥') = 0, i.e. refine-
ments are unique.

The relationg and < are related as follows: First of a,
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Figure 1. A complex task with refinement ( p) and
precedence ( <) relations between tasks. Tp
{t1,t2} is the set of initial tasks. Other tasks are re-
finements of these tasks. Note that  {t21, t22, 23} =
pa(t2), while py(t11) = {ti11, t112}.

and< are orthogonal, i.ep™ N (< U <°)*) = (: prece-

2. 0 # p(t) C py and there is a task’ € p(t) that has
been completed;

3. 0 # p(t) C pn and all tasks’ € p(t) have been com-
pleted;

In Figure 1 for instance, tagk; is completed if eithety; is

performed directly, orit,,; is performed, or it,,5 is com-
pleted by either performing, 1 directly, or by performing
bOthtllgl andt1122.

Definition 3.2 (Task network completion) A task net-
work (T, p) is said to be completed if every taskn the

set of initial tasksTy = {t | p°(t) = 0} has been com-
pleted.

A task network is thus completed if all ‘root’ tasks
have been completed; in Figure 1, the task network
has been completed if both and ¢, have been com-
pleted and these tasks can be completed by e.g. perform-
ing the taSkStlll,t12,t21, too1, taoo and ta3. Note that

the model presented here differs from most other hier-
archical task frameworks in the sense that we do not re-
strict the tasks to be performed to the set of leaf-tasks (tasks
t for which p(t) = 0).

Task allocation To perform a certain task € 7, an
agentA, must have the capabilities required to perform it.
We assume that in the entire multi-agent systemndis-
tinct capabilities ¢y, co,...,¢c,, can be distinguished.
We represent the capabilities of ageAt by the vec-
tor ¢(A;) = (c1(4s),...,cm(Ai)) € (NU {oco})™, where
c;(A;) specifies how much agend; can offer of ca-
pability ¢; (we will assume integral quantities). Sim-
ilarly, the vectorc(t;) = (c1(t)),...,cm(tj)) € N™
specifies how much of each capability taske T re-
quires An agentA; is said to be able to perform a sub-
set of tasksl; C T iff &(A;) > Tier, é(t) (Wherex > ¢
iff forall ¢ =1,...,m, 2; > y;). Note that ifc;(A;) is fi-
nite, the capability is considered to becansumable re-
source (i.e., fuel, time, or money). It;(4;) = oo, we
are dealing with anon-consumable resourceapability
(i.e., knowledge or a skill§.In the following, we will ab-

dence relations only exist between tasks that are notbreviate the set of agent capability vectors and the set
refinements of each other. Secondly, precedences are inof task capability vectors byi(A) and ('), respec-

herited via refinements, that is, if < ¢ then for all
t1 € p(t) and for allt; € p(t') we havet; <T ¢/, ¢t <T ¢,
andt; <* t,. See Figure 1 for an example of a com-
plex task specification.

We now inductively define task completion in a task net-
work (7', p) as follows:

Definition 3.1 (Task completion) A taskt in (7', p) is said
to be completedif exactly one of the following conditions
holds:

1. ¢t has been performed directly;

tively.

A typical free task instanceis specified as a tu-
ple (T,p,<,A,&(A),&(T)). Such an instance speci-
fies the tasks, their refinement relation, dependencies, and
the task as well as the agent capabilities.

To complete the set of tasks, individual taskst € T
have to be assigned to agents. Given a task net{@rk),
first of all we have to define which (subsets of) tasks can be
assigned to agents in order to compléfe p). Such a set

6 Such resources are also caliefinite resources.



T’ C T we call acandidate assignment sahd is defined 2. the set ofinter-agentconstraints, i.e., the set of con-
as follows: straints that hold between tasks assigned to different

Definition 3.3 77 C T is a candidate assignment set agentsi<inier= (<" NU,; (Ti x Tj)) ™

(T, p) if T’ satisfies the following requirements: Each agent4; then has to solve a subtagk;, <;) gener-
ated by the task®; allocated to it. We assume that in order
to completel’; each agent has to construgtlan (or sched-

ule) for it. We do not make any assumptions about the plan-
ning tools used by the agents. Whatever plan/schedule rep-
resentation the agents (internally) employ, we assume that
2. Ift € py(t') for somet’ € T thenpy (#') NT" = {t}) the planA; develops forT; can be represented as a struc-

(a unique choice has to be made to complete a task bywyre P, = (T;,7;) extending? the dependency structure

1. T" is a pT-independent subset @f, i.e. ift,t' € T’
then neithettp™t’ nor ¢’ p*t should hold; (it is not al-
lowed to perform both a task and one of its (indirect)
subtasks);

OR-subtasks); (T;, <), i.e.,m;" is a partial order such that; < ;.
3. (T, p) is completed by performing the tasks@h (cf.  joint plans From the perspective of an individual agent,
Definition 3.1) . it should be completely autonomous in choosing its plan,
Referring to Figure 1, the S8 = {t111, t12, ta1, tas1, tazo, i.e. the exact extension; of <;. Due to the presence of the
ts3} is a candidate assignmentse&n assignment sds a inter-agentconstraints, however, not every combination of
candidate assignment sBtwhere every taske 7’ canbe  individually developed plans will result in a feasible joint
assigned to an agent capable of performing it: plan. The coordination problem now can be stated as fol-

lows: How can we guarantee that every combination of in-
dividually generated plans can be combined into a feasible
joint plan, without revising them? The answer lies in impos-
ing, prior to planning, additional constraints on the agents’

Definition 3.4 (assignment set)7” C T is anassignment
setfor a free task instancéT, p, <, A, &(A), &(T)) if (i)

T’ is a candidate assignment set afig there exists a
partitioning® [T"] = [Ty, Ts,...,T,] of T such that for

) . S subtasks.

ZZ: 1’; .., 1, agentd; is able to perforntls, i.e.,c(A;) = Before we state our coordination problem formally, we
ter;C(t). first define goint plan of the agents; in a fixed task in-

Applying an assignment to a free task instar{@e p, < stance:

’A75£A>78£T>> res_ults in dixed task_|nstanc(a[Ti];l:_1, = Definition 3.5 A planP is a joint plan for the task instance

VA, c(A),g(_T)). Since now the refinement relation and (T2, <) if P = (T',7), whereT” = (J_, T;, andr+

the cgpabmtles are no I_onger nee&emqagents are char- is a ;L)artial order extending, i.e., < < . =

acterized by the partition blocks of @aindependent set

T’ C T, we often abbreviate fixed task instances by the tu- We need to guarantee that individual agents do not need

ple ([T;]™_,, <). Without loss of generality we assume ev- 10 revise their individual planéT;, 7;) when assembling a

ery blockT} to be non-empty. joint plan from them. That is, the joint plan shoukkspect
Intuitively, a complex taskl™ specifies both alternative ~€ach individual plan:

ways and minimal restrictions for organizing the comple- pefinition 3.6 A joint plan P = (77, ) respects the in-

tion of T'. We mention that these complex tasks can be seengividual plan P, = (T},;) of agent4; if 7, C T’ and

to extend the notion of &ask treeas introduced by [21]. T < (70 (T x T)).

_ ] ~ We don't need to specify exactly how the individual plans
Planning As the result of a task assignment process, in @ 5re gssembled to construct the overall plan. It suffices to
fixed task instance[T;];_,, <) the set of precedence con- ¢gnsider the case of just joining the individual partial order-
straints< is split up into two disjoint subsets: ings together with the inter-agent constraints:

1. the set=inra= ;_, =i of intra-agentconstraints,  pefinition 3.7 (Simple joining) Given a fixed task in-
where<;= (<" NUU;_,(T;xT;))~ isthe setof prece-  gtance ([T:],, <) and a set{ P, = (T;,m;) }i, of
dence constraints between tasks assigned to the samgygjvigual plans, thesimple joiningof them is the struc-
agentd; and ture J = (U, T, 7s), wherer = (<nter U(UL, 7).

7 Observe that a candidate assignment set does not have strict superse[\slow itis not difficult to see that the Slmple joining exhibits

or strict subsets that also are candidate assignment sets. Moreover, i@ tell-tale property w.r.t. respecting individual plans: Given
p = 0, there is only one unique candidate assignmentiSet= T a fixed task instanc€T;]™_,, <), there exists a joint plan

8 Since the agents are planning independently, we only corsiugle- P for it respecting the individual planB = (7.. ) of the
agent task assignmer(st. [9]). P 9 plang; = (I;, mi)
9 Since it is assumed that each agent is able to complete the tasks as-
signed to it and no two or more tasks in an assignment seteekated. 10 Since a plarP; at least has to satisfy all intra-agent constrairis




intra-agents constraints of agest. Then, whatever plans
the agents come up with (respecting their intra-agent con-
straints, of course), the results can always be combined into
’Q an acyclic joint plan: by adding such a coordination set the
! instance has become a coordinated instance. In general, the

Ly solution if to specify, for each agent;, a minimum set\,

: of additional intra-agent constraints such that the resulting
(Y) instance([T;]7_,, < UA), with A = |J] A, is a coordi-
t iy t 4y nated instance. It is not difficult to show that such aAet
always exists:

Aq Ay Aq Ay

@ (b) Proposition 4.2 Let ([T;]7,, <) be a fixed task instance.
Then there always exists a detC U?:l T; x T; such that

Figure 2. A set of interdependent tasks 7T = ([T3),, < UT)is afixed task instance that is coordinated.

{t1,t2,t3,t4} and two agents A; and A each as- Proof. Since <t is a partial order, there always ex-
signed to a part of 7' (a). If agent A; decides to ists a total ordering<* of T' extending<*. For eachl},
make a plan where t, precedes t; and A> makes a let T"; be a smallest set of precedence constraints such that
plan where ts precedes t4 (see b), these plans can- (=; U Fi)+ ==<* N (T; x T;) and letl" = |JT;. Clearly,
not be combined. (U It <« <*is a partial order, sd[T;]",, < UTI')
is a task instance. Moreover, for evety = 1,...,n,
(<; U T;)* totally ordersT;; hence, for every individ-
agents iff the simple joining/ = (U;_, Ti,7;) of them  yal planP; = (T}, ;) we must haver; = (<; U I}).
induces a partial ordering & = |J;'_, T3, i.e., if wj is Hence,< U U, m = < U T is acyclic and there-
acyclic. So it suffices to concentrate on simple joinings. fore the instance is coordinated. O

4. Coordination problems
If, for a given fixed task instance, it holds that what-
ever individual plans are constructed, their simple joining ists a minimum sets C |J, T; x T such that[T}]™,, <

Is always acyclic, the instance is said to Geordinated U A) is a task instance that is coordinatédn the follow-

Clearly, coordinated instances guarantee independent plani-n section we will analvze the computational complexit
ning without the need to revise individual plans. Unfortu- 9 y P plexity

. . . . of some variants of the coordination problem and the fac-
nately, not every fixed task instance is coordinated and thetors that influence their complexit
question arises how to induce this property for every task in- pilexity.

Given that the set of tasks and precedence constraints is
finite, by Proposition 4.2, it follows that there always ex-

stance: 5. Complexity results

Example 4.1 Consider two agentsi; and A, and four We will start with the easiest variant of the coordina-
tasksT = {t1,t2,t3,t4} (See Figure 2 (a)): The prece- tion problem: toverify for afixedtask instance whether in-
dence relation< is given as< = {(t1,t3), (t4,t2)}. Sup- dividual plans always can be joined whatever plans may

pose thatt,t, are assigned tad; andis,t4 to As. Then be composed by the participating agents, i.e., determin-
A; has to solve the subtagKty, ¢}, 0) , while A5 has to ing whether a task instance is already coordinated:

solve({ts, 24}, ). Note that< ., =<. Suppose nowi, FIXED COORDINATION VERIFICATION (FIXCV)
chooses a plan whetg will be performed beforé; and A, Given a fixed task instanc€[T;]7_,, <) , is it true that, for
chooses a plan wherg will be performed before, (see  gyery; — 1,... n, if the extensionsr; C (T; x T;) of

Figure 2 (b)). Then there exists no feasible joint plan pre- _ N(T; x T;)) are acyclic, then the relation U (JI_, 7,
serving=< and the individual plans since the combination of g acyclic as well? =

their plans with the inter-agent constraints constitutes a cy-
cle:t; < tg my t4 < ty m t1, implying thatt; has to be
performed before, .

This problem is co-NP complete: it is in co-NP be-
cause we can polynomially verify a counter example con-
sisting of a set of agent plans that create a cycle in

The solution we propose is to addrainimumset of  the joint plan. Determining that no such counter exam-
intra-agent precedence constraints (calledoardination ple can be found — the instance is coordinated — is at
se) such that the independence-threatening inter-agent con-
straints are made harmless: Looking back at Example 4.1,1; gjsewhere ([18]) we have presented a distributed (approximation) al-
a possible solution is to add — prior to planning — an gorithm to approximate such a minimum sét of additional con-
additional constraint, for instandg < t,, to the set of straints.




least as hard as the NP-completeTP WITH FORBID- problem remains intractable. For example, if each agent re-
DEN PaIRs (PWFP, see [8]) problem, howeVvér. ceives only two tasks, th@Fix C-problem is already co-
Going from fixed task instances to free task instances NP-complete and}-completeness can be proven already
implies the addition of task assignment problems in the co- for agents having 8 tasks or more.
ordination verification problem. These task assignment Since fixed and free variants differ in complexity with
problems constitute an independent factor of complex- respect to the coordination-verification problem, one would
ity as the total complexity goes up one step in the polyno- expect the same complexity differences to occur between
mial hierarchy: the following REECV-problem turns out  the fixed and free variants of the coordination problem.
to beXE-complete: Consider the following free-variant:

FREE COORDINATION VERIFICATION (FREECV) FREE COORDINATION (JFREEC) Given a free task in-
Given a free task instancdT, p, <, A, ¢(A),c(T)) does stance(T, p, <, A,é(A),&(T)) and a positive integell’ >

there exist a single-agent task assignment such that the red, does there exist an assignment of tasks to agents and a co-
sulting fixed task instancé[7;]_,, <) is coordinated? ordination setA with |A| < K such that the resulting fixed

By first guessing a task assignment and then using at@SKinstancg[Zii_,, < UA)is coordinated?

Fix CV-oracle for the resulting fixed task instance we could Note that it suffices to guess both an assignment and a coor-

verify a yes-instance in polynomial time. Hence, the prob- dination setA to verify in polynomial time using aix CV-

lem is inX%. Hardness for this class is shown by reducing oracle that the given instance is a yes-instance. Therefore,

a¥L-complete quantified version of the PWFP-problem to the problem is no harder than thé&ix C-problem. Hence,

it. the additional task of producing an assignment does not in-
It is interesting to note that the problem of finding a crease the complexity of the problem in an essential way.

suitable single-agent assignment for a free task instance Itturns outthe most difficult coordination problems have

is NP-hard for consumable capabilitésand polynomi-  to do with guaranteeing thaveryassignment of agents to

ally solvable for non-consumable capabilities. These differ- tasks results in a coordinated task instance if we are allowed

ences in complexity, however, disappear when these assignto add at mosf(-constraints:

ment problems interact with the coordination problem: the Free For ALL COORDINATION (VFREEC) Given a free

FREECV-problem turns out to b&%-hard for both assign- a5k instanceT, p, <, A, &A), &T)) and a positive integer

ment conditions. K > 0, is it true that for every feasible assignment of tasks
Both verification problems ask whether task instances to agents, there exists a coordinationAet UL (TixT3)

are coordinated. More complicated coordination problems with |A| < K such that the instandéT;]7_,, < UA) is co-

ask for the existence of bounded sets of precedence conprdinated?

straints (coordination sets) that, when added to a task in-

. ) By guessing an assignment and usirig,aoracle for the re-
stance, render it coordinated: y9 g 9 g,

sulting 3FIxC -problem, we can verify a counter-example
FIXED COORDINATION (3FIXC) Given a fixed task in-  in polynomial time. Hence, the problem is Ii, and also
stance ([T;]7-,, <) and a positive integét K > 0, does  turns out to be complete for this class, too.

there exist a seh C (J;_,(7; x T;) with |A| < K such . .

that the fixed task instandél;]_,, < UA) is coordinated? ~ 6. Discussion

Intuitively, guessing a coordination sét, we can verify We have introduced a task-based framework to discuss
in polynomial time using a & CV-oracle whether the in-  SOme computational aspects of a coordination problem for
stance([T;]!,, < UA) is coordinated. SincelkCVe co- non-cooperative agents. We have analyzed the computa-
NPC, it follows that Fx Ce 3. Elsewhere, we have shown tional complexity of some variants of this problem and dis-

this IFixC problem to be&c-complete. cussed some factors and their interaction contributing to

It would be reasonable to assume that one source of com{Nis complexity. Although these problems turn out to be

plexity of the coordination problem can be attributed to the intractable for already simple task instances, elswhere we
number of taskeach agent receives and — indirectly — have shown that reasonable solutions can be obtained by

to the complexity of the single-agent planning problems. adding (nearly mi_nimal) sets of additi(_)nal con:?traints.
This, however, turns outot to be the case: even if the To conclude this paper, we would like to point out some

single-agent planning problems are trivial, this coordination Proader perspectives on the approach to the coordination
problem(s) as we discussed above.

First of all, our pre-planning coordination problem can
be viewed both as decomposition probleras well as ae-

12 Due to lack of space, all complexity proofs have been omitted. For de-
tails consult [17].

13 By reduction from e.g.ARTITION.

14 Note that forK' = 0 this problem is equivalent toilkCV. 15 So we have still a complexity gap between 2 and 8 tasks per agent.




vision by minimal change problemow to ensure that solu- [8] M. R. Garey and D. S. Johnso@omputers and Intractabil-
tions (plans) to independently solved subproblems always ity: a guide to the theory of NP-completene#sH.Freeman,
can be integrated into an overall solution ( a coordinated 1979.

plan) by minimally changing the original problem, i.e. by [9] B. P. Gerkey and M.J. Mataric. A formal analysis and tax-
adding a minimal set of additional constraints to the origi- onomy of task allocation in multi-robot systems.Ifterna-
nal problem? Essentially, our approach to the coordination ~ tional Journal of Robotics Researchages 23(9):939-954,

problem then suggests the following (central or distributed) 10 30%45 ) Coordinat hni ; 187-210
algorithmic method to solve these and possibly other multi- ] 1996 ennings. Coordination techniques for. pages 187=210.

agent problems: try to minimally change the original prob-

lem such that a divide-and-conquer approach can be used t&ll] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey,

B. Horling, D. Neiman, R. Podorozhny, M. NagendraPrasad,

solve the problem by decomposing it into a number of inde- A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang. Evolu-
pendent subproblems whose solution can be simply joined jon of the GPGP/TAEMS Domain-Independent Coordina-
to compose the overall solution. tion Framework. Autonomous Agents and Multi-Agent Sys-

Secondly, with respect to planning technology, we note tems 9(1):87-143, July 2004.
that methods using this approach would be able to seam{12] Victor R. Lesser. Cooperative multiagent systems: A per-

lesslyintegrate existing single-agent planning tools into a sonal view of the state of the attEEE Trans. Knowl. Data
multi-agent environment: decompose a multi-agent prob- Eng, 11(1):133-142, 1999.

lem into a number of independent single-agent planning [13] Th. W. Malone and K. Crowston. The interdisciplinary study
problems by minimally revising the original problem, let of coordination. ACM computing surveyd993.

the agents work on them using their own planning technol- [14] F. Von Martial. Coordinating Plans of A_u_to_nomous. Agents
ogy and then integrate the results into an overall solution ~ Volume 610 ofLecture Notes on Artificial Intelligence

just by joining the individually constructed plans. Springer Verlag, Berlin, 1992. . _
[15] T.W. Sandholm. Distributed rational decision making. pages

201-258, 1999.
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